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In the framework of Rayleigh’s description, we have investigated the eigenfrequencies of the capillary waves
of a nonwetting droplet under forced oscillations �pointlike force�. The theoretical model using the spherical
harmonics Y�,m�� ,�� as a part of the solution of the Laplace equation, is in good agreement with the experi-
mental results. This model can be generalized for all kinds of excitations with a sitting or a levitating droplet
due to the decomposition of the excitation on the spherical harmonics basis. From this study, a different
theoretical way of interpreting droplet bouncing is presented motivating a wide range of industrial applications.
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The beauty of water droplets has long been a source of
inspiration for poets and they are still fascinating a large
community of scientists even after a century of research �1�.
The underlying physics of these objects of common appear-
ance is extremely rich, from surface physics with nontrivial
phenomena such as capillarity, wetting, or bouncing, to hy-
drodynamics. Recently, with the development of superhydro-
phobic surfaces �2,3� and the levitation of droplets by the
Leidenfrost effect �4�, the bouncing of the water droplet has
been intensively studied by groups at Ecole Normale
Supérieure �5� and at the Collège de France �6,7,9�. Quéré
et al. have observed that a water droplet can bounce over 20
times with a restitution coefficient close to 0.9 throughout
the trajectory �6�. In the limit of small deformations, it has
been demonstrated that these “liquid balls” behave as a
quasi-ideal spring, a “water spring.” This elasticity is related
to an efficient transfer between kinetic and surface energy
during the drop deformation �7�. Finally, like Hertz �8�, they
have also measured an impact time � between the drop and
the surface of the order of 3 milliseconds for a millimeter-
size droplet �9�. Besides the novelty and the fundamental
aspects arising from this field of research, these experimental
results have led to a wide range of practical applications
from agricultural spray to ink-jet technology.

In this paper, we have developed a generalized theoretical
model using the decomposition on the spherical harmonics
basis to describe the eigenfrequencies of a spherical droplet
�nonwetting� of an incompressible fluid. Droplets tend to as-
sume their shape from a compromise between the action of
surface tension �or capillary forces� and gravity. This com-
promise depends on the capillary length �−1=�� /�g which is
obtained by equating the Laplace pressure � /�−1 and the
hydrostatic pressure �g�−1 for a liquid of density � and with
a surface tension �. In the case of water �with a surface
tension ��72 mN/m and a density ��1000 kg/m3�, if the
radius of the droplet R is larger than the capillary length
��−1=2.7 mm�, gravity prevails over capillary forces �10�.
The theoretical description for oscillations of a mass of liq-
uid was treated first by Rayleigh �11�. In Course of Theoret-

ical Physics: Fluid Mechanics �12�, Landau gave a math-
ematical interpretation of the nature of free oscillations for a
levitating spherical droplet under capillary forces by using
spherical harmonics Y�,m�� ,��. In the framework of Ray-
leigh’s description and Landau’s formalism, we have devel-
oped a model for spherical droplet oscillations induced by
a pointlike force. In the limit of small amplitudes, the capil-
lary eigenmodes of a droplet, with a radius R, are obtained
by deriving the Laplace equation for a surface slightly dif-
ferent from a sphere. This surface, defined by a function
r=r�� ,��, is given by r=R+	, with 	 a small deviation,
compared to r�R for a sphere �Fig. 1�. The Laplace equa-
tion �13� is then obtained by determining the curvature 
 for
a spherical surface r=R+	, and gives the pressure difference
�P= P− Pf =�
:
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where Pf is the applied pressure and P is the internal pres-
sure, related to the velocity potential � by P=−��� /�t. The
velocity potential must satisfy ��=0 with a boundary con-
dition at r=R. From a mathematical point of view, this is a
typical boundary value problem where the solutions are non-
elementary functions. In the case of a spherical droplet,
where the pressure difference is due to the curvature, we
consider the Dirichlet problem for the Laplace equation in a
unit sphere. The velocity potential is ��=0 for R
1 �inside
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FIG. 1. �Color online� Problem of a Dirichlet for a droplet sit-
ting on a substrate and deviating from its spherical shape.
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the droplet, normalized by 1/R� and ��r ,� ,��= f�r ,� ,��
for R=1 �Fig. 1�. As usual, we first consider a solution
of the Laplace equation in the form of a stationary
wave ��r ,� ,��=exp�−i�t�f�r ,� ,��. The function f�r ,� ,��
can be represented as a linear combination of volume
spherical harmonics functions r�Y�,m�� ,��, where Y�,m�� ,��
are the Legendre spherical harmonics, given by Y�,m
=N�,mP�

m(cos���)exp�im��. The spherical harmonics,
defined by the degree �=k and the azimuthal order
m��−k ,k� with k an integer, are the restrictions to the
sphere of a homogeneous harmonic polynomial, called the
associated Legendre function P�

m�cos ��exp im�. The first
factor in the spherical harmonics Y�,m�� ,�� expression,
N�,m=��2� +1���−�m � � ! /4���+ �m � �!, is a normalization
factor chosen to make the angular variables orthonormal.
Then we seek a particular solution of the problem in the form
�=A exp�−i�t�r�Y�,m�� ,��, where A is the oscillation ampli-
tude. For a levitating sphere, the external pressure is con-
stant. However, for a spherical droplet sitting on a substrate,
the external pressure Pf is no longer constant. At the contact
point ��=0� between the droplet and the substrate, the distri-
bution of the applied pressure Pf must be a Dirac function
that can be decomposed on the spherical harmonics basis,

Pf =
Fc

R2 �
�=2

�

�
m=−�

m=�

N�,mY�,m��,�� , �2�

where Fc is the force contact between the droplet and
the substrate. As Pf =−��� /�t at �=0, we obtain Fc /R2

= �−�i�A exp�−i�t�R�� /N�,m. We substituted the pressure Pf

�Eq. �2�� and � in the derivation of Eq. �1� with respect to
time and with �	 /�t=�� /�r �derivation described in Course
of Theoretical Physics: Fluid Mechanics �12�� and used the
fact that the spherical harmonics are eigenfunctions of the
angular part of the Laplace operator L2 that must satisfy

L2�Y�,m��,��� + � �� + 1�Y�,m��,�� = 0, �3�

where Y�,m�� ,�� must be bounded for 0����, 0��
�2�, and periodic in �. Finally we obtain the dispersion
relation that gives the eigenfrequencies of the forced capil-
lary oscillations for a nonwetting droplet:

��
2 =

�

�R3

���− 1��� + 2�
1 + ��2 � + 1�/4�

. �4�

Spherical harmonics Y�,m�� ,�� are very useful to physically
understand the droplet oscillations. On the sphere, �−�m� and
�m� correspond to the number of parallels �isolatitudes� and
local meridians �isolongitudes� for which the harmonic func-
tion is null, respectively. Between these nodal circles, the
function is alternatively positive or negative. In the case of a
sitting spherical droplet, azimuthal orders �m� are forbidden
since the perturbation point coincides with a nodal line �a
meridian which passes through the two poles� for all values
of �m�. Then the dispersion relation �4� depends only on the
degree �, from which a wavelength �=2�R /� can be defined
as � corresponds to the total number of nodes on the sphere.
If we compare the dispersion relation �Eq. �4�� with free
droplet oscillations, a difference in oscillation times � is

observed. In the case of forced oscillations, the force, result-
ing from the applied pressure Pf, leads to a gain of the
surface area due to the spherical harmonics and behaves
consequently as a negative forced surface tension � f. This
forced surface tension is given by defining an effective sur-
face tension �ef f =� / �1+N�,�m�� and we obtain � f =�ef f −�
=−�N�,�m� / �1+N�,�m��. As ����R3 /� and �ef f 
� the forced
oscillations time is greater than the free oscillation time. By
an analogy with a harmonic spring, this is similar to the case
where the applied force on the spring is proportional to its
displacement.

The dispersion relation �4� has been tested by analyzing
experimentally the dependence of � with the degree � of the
spherical harmonics function. Since the degree � corresponds
to the droplet eigenmodes, they have been determined from
the frequency spectrum obtained with a simple apparatus.
The experiment, presented in Fig. 2, consists in inducing
forced capillary oscillations of a spherical �nonwetting� drop-
let placed on a piezoelectric device covered by a PTFE film.
To assure a nonwettability on the PTFE substrate, mercury
droplets ��=13450 kg m−3� of known radius R were used
since they possess a high surface tension. With a dynamic
contact angle apparatus �FTA200, First Ten Angstroms� both
the contact angle �m and surface tension � have been
checked and we found �m= �175±5�° and ��465 mN/m.
The droplet eigenmode oscillations were detected with an
optical apparatus, as shown in Fig. 2. A laser diode mounted
with a cylindrical lens was generating a vertical line larger
than the diameter of the mercury droplet, and the incident
light was collected into a high speed photodiode �from
Radiospares�. Since mercury droplets do not transmit the in-
cident beam light, the intensity variation on the photodiode
is directly related to the calibrated oscillation amplitudes �A
of the droplet �the calibration of oscillation amplitudes has
been realized by displacing vertically the droplet with a pre-
cision stage�. The piezoelectric device �from Ceramitone,
Radiospares� was supplied by a numerical function genera-
tor. The frequency spectra are obtained by applying a fre-
quency sweep ranging from 1 Hz up to 2 kHz with a rate of

FIG. 2. Scheme of the optical apparatus for the detection of
droplet eigenmodes. Forced capillary oscillations of mercury drop-
lets are obtained with a piezoelectric substrate covered by a PTFE
film to assure a contact angle �m close to 180°. Even eigenmodes
�=2k are determined from the frequency spectra. Odd eigenmodes
�=2k+1 are detected by visualizing the trace of a reflection dot
�black dot� on the surface of the mercury droplet.
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2 Hz s−1 and by using a high speed data acquisition �code
written with Labview 7.0�. Figure 3 shows the first eigen-
modes for a mercury droplet of radius R=1.6 mm, as a func-
tion of the oscillating frequency. From the frequency spec-
trum, only even values of ����=2, �m � =0� , ��=4, �m � =0��,
��=6, �m � =0�, and ��=8, �m � =0� have been detected. We
note here that odd values of degree �=2k+1 are not forbid-
den but their detections with the laser apparatus are not pos-
sible as the harmonic function presents an antisymmetric
oscillation �alternates from a positive, at �=0, to a final
negative value at �=��. However, the determination of odd
eigenmodes has been possible by following the trace of a
reflection dot on the surface droplet with a charge coupled
device camera, as shown in Fig. 2. It appears for all �=2k
+1 eigenfrequencies that the position of the gravity center is
conserved. Conversely, for even values of �, where the
spherical harmonic presents a symmetric oscillation, we
have a displacement of the gravity center with the forced
oscillations. Here, the gravitational term does not affect the
dispersion relation �Eq. �4��. The normalized pulsation
��� /�R3�−1/2 has been plotted in Fig. 4 as a function of � for
three sets of data with different radii R �circles, R=1.0 mm;
triangles; R=0.8 mm; and squares, R=0.5 mm�. The experi-
mental data show a good agreement with Eq. �4�, justifying
the correction term 1+��2� +1� /4� added to the Rayleigh
formula. We noticed that a fit using Rayleigh’s formula for a
spherical and levitating droplet deviates from our experimen-
tal data. From these sets of data, we have also plotted � as a
function of R to determine the power law related to the ra-
dius Rn. For the three different droplet radii, we found a
power law of n�− 3

2 , according to the first term of Eq. �4�
�data not shown�. Moreover, we have investigated the experi-
mental gap between forced �frequency fixed at 35 Hz� and
free oscillations �see for levitating liquid droplets �14� and
for wetting drops �15–17�� of mercury droplet for the first
eigenfrequency ��=2, �m � =0� �Fig. 5�a��. From the corre-
sponding fast Fourier transform �FFT� �5�b��, we obtained
a value for the ratio between the dispersion relation for
forced oscillations �Eq. �4�� and free oscillations given by
Rayleigh of 0.78±0.02, which corresponds to the correc-

tion term �1/ �1+�5 � 4��.

We have extended our model of droplet oscillations under
a pointlike force to the case of droplet bouncing, focusing, in
particuiar, on the interesting problem of impact. This field of
research has been put on the map recently as it leads to a
wide range of industrial applications. In the literature, the
experimental work of Richard et al. �9� has pointed out that
the contact time of a nonwetting bouncing drop scales as the
period of a drop vibration derived by Rayleigh, with a mea-

FIG. 3. �a� Frequency spectrum of a mercury droplet of radius
R=1.6 mm showing the first eigenfrequencies for even values
��=2k , �m � =0�. �b� Photographs of vibration modes for mercury
droplet. FIG. 4. Normalized pulsation � as a function of the order � for

mercury droplets of radii R=1.0 mm �circles�, R=0.8 mm �tri-
angles�, and R=0.5 mm �squares�. The experimental data show a
good agreement with Eq. �4�. A fit using Rayleigh’s formula for a
levitated sphere deviates from our data.

FIG. 5. Forced �frequency fixed at 35 Hz� and free oscil-
lations of mercury droplets �R=1.6 mm� for the eigenfrequency
��=2, �m � =0� �b� The corresponding FFT shows a ratio between
forced and free oscillations of 0.78±0.02.
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sured experimental prefactor equal to 2.6±0.1. In the first
approximation, we have considered that the bouncing can be
described as one-half of the oscillation. Accordingly, the free
oscillation prefactor, determined in the framework of Ray-
leigh, should be lower with a value of 1.65. Here, the decom-
position on the spherical harmonics basis, as described in the
first section of this paper, can be used to explain theoretically
the difference in the prefactor values. However, in the case of
a droplet bouncing, the oscillations are not provided by the
oscillating substrate but by the transfer of the kinetic energy
of the falling drop into an oscillating mode induced by a
fixed surface. From this consideration, we have obtained
three equations in the approximation of the two first spheri-
cal harmonics ��=1 and �=2� and small amplitude oscilla-
tions �	��R / � �:

N1	1 + N2	2 = 0, �5�

�R	̈1 + Fc
N1

R2 = 0, �6�

�R
	̈2

2
+

4�

R2 	2 + Fc
N2

R2 = 0, �7�

where Eq. �5� represents the contact between the drop and
the substrate surface, Eqs. �6� and �7� are the Rayleigh’s
equations applied to the translation �projection on �=1�, and
to the first harmonic oscillating mode �projection on �=2�,
respectively. From Eq. �6�, we obtained the new expression
of the contact force Fc,

Fc = − �R3
 	̈1

N1
� . �8�

The two eigenmodes composed by both translation and os-
cillation terms are obtained by solving the differential system
composed by Eqs. �5� and �7�. We found one trivial solution

equal to zero and a theoretical prefactor with a value of 2.3.
As a result, we have calculated a contact time close to the
experimental value obtained by Richard et al. �9�. We
strongly believed that the difference observed with the free
oscillation prefactor is due to the coupling between the trans-
lation and oscillations modes. However, in order to obtain a
complete description, this model has to be extended to more
than two harmonic oscillating modes �18�.

In summary, we have used the decomposition on the
spherical harmonics basis to investigate theoretically forced
and free oscillations of spherical droplets. Our model devel-
oped in the regime of capillary forces for droplet oscillations
induced by a pointlike force is in good agreement with ex-
perimental results using mercury droplets. As the excitation
can be decomposed on the basis of spherical harmonics, ac-
cording to Eq. �2�, this model can be generalized for all kinds
of excitations of a sitting or levitating droplet. We have
extended this model for the interesting case of droplet bounc-
ing, in particular, for impact problems. In the approximation
of the first harmonic oscillating mode, we have calculated
a contact time longer than the experimental value of Richard
et al. �9�. We strongly believed that the increase of the free
oscillating prefactor is due to a coupling between translation
and oscillation modes. However, in order to obtain a com-
plete description, one needs to extend this model to more
than two harmonic oscillating modes �18�. Another interest-
ing perspective is to apply this model to the case of a par-
tially wetting droplet under forced oscillations �19�. The wet-
ting effect on droplet eigenfrequencies is a nontrivial
phenomenon and this study is motivated by the range of
applications in fields such as microfluidics, inkjet technol-
ogy, and for dynamic contact angle and surface tension mea-
surements.

We are grateful towards Sir S. Edwards and D. Quéré for
their comments on the manuscript.
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